Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4964, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501584

RESUMO

Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Ácido Graxo Sintase Tipo II/química , Ácidos Micólicos/metabolismo , Hidroliases/química
2.
J Biomol Struct Dyn ; : 1-19, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450660

RESUMO

Mycobacteria regulate the synthesis of mycolic acid through the fatty acid synthase system type 1 (FAS I) and the fatty acid synthase system type-2 (FAS-II). Because mammalian cells exclusively utilize the FAS-I enzyme system for fatty acid production, targeting the FAS-II enzyme system could serve as a specific approach for developing selective antimycobacterial drugs. Enoyl-acyl carrier protein reductase enzyme (MtInhA), part of the FAS-II enzyme system, contains the NADH cofactor in its active site and reduces the intermediate. Molecular docking studies were performed on an in-house database (∼2200 compounds). For this study, five different crystal structures of MtInhA (PDB Code: 4TZK, 4BQP, 4D0S, 4BGE, 4BII) were used due to rotamer difference, mutation and the presence of cofactors. Molecular dynamics simulations (250 ns) were performed for the novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones derivatives selected by molecular docking studies. Twenty-three compounds selected by in silico methods were synthesized. Antitubercular activity and MtInhA enzyme inhibition studies were performed for compounds whose structures were elucidated by IR,1H-NMR,13C-NMR, HSQC, HMBC, MS and elemental analysis.Communicated by Ramaswamy H. Sarma.

3.
Bioorg Chem ; 143: 107032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128204

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a worldwide scourge with more than 10 million people affected yearly. Among the proteins essential for the survival of Mtb, InhA has been and is still clinically validated as a therapeutic target. A new family of direct diaryl ether inhibitors, not requiring prior activation by the catalase peroxidase enzyme KatG, has been designed with the ambition of fully occupying the InhA substrate-binding site. Thus, eleven compounds, featuring three pharmacophores within the same molecule, were synthesized. One of them, 5-(((4-(2-hydroxyphenoxy)benzyl)(octyl)amino)methyl)-2-phenoxyphenol (compound 21), showed good inhibitory activity against InhA with IC50 of 0.70 µM. The crystal structure of compound 21 in complex with InhA/NAD+ showed how the molecule fills the substrate-binding site as well as the minor portal of InhA. This study represents a further step towards the design of new inhibitors of InhA.


Assuntos
Antituberculosos , Imidazóis , Mycobacterium tuberculosis , Sulfonamidas , Tiofenos , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Éter , Éteres , Sítios de Ligação , Etil-Éteres , Proteínas de Bactérias/metabolismo
4.
PLoS Pathog ; 19(7): e1011437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37450466

RESUMO

The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Humanos , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Tuberculose/microbiologia , Mamíferos
5.
Eur J Med Chem ; 259: 115646, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37482022

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Éter , Éteres/farmacologia , Etil-Éteres/farmacologia , Isoniazida/farmacologia , Mutação , Ácidos Micólicos
6.
J Mol Biol ; 435(10): 168048, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933821

RESUMO

Knr4/Smi1 proteins are specific to the fungal kingdom and their deletion in the model yeast Saccharomyces cerevisiae and the human pathogen Candida albicans results in hypersensitivity to specific antifungal agents and a wide range of parietal stresses. In S. cerevisiae, Knr4 is located at the crossroads of several signalling pathways, including the conserved cell wall integrity and calcineurin pathways. Knr4 interacts genetically and physically with several protein members of those pathways. Its sequence suggests that it contains large intrinsically disordered regions. Here, a combination of small-angle X-ray scattering (SAXS) and crystallographic analysis led to a comprehensive structural view of Knr4. This experimental work unambiguously showed that Knr4 comprises two large intrinsically disordered regions flanking a central globular domain whose structure has been established. The structured domain is itself interrupted by a disordered loop. Using the CRISPR/Cas9 genome editing technique, strains expressing KNR4 genes deleted from different domains were constructed. The N-terminal domain and the loop are essential for optimal resistance to cell wall-binding stressors. The C-terminal disordered domain, on the other hand, acts as a negative regulator of this function of Knr4. The identification of molecular recognition features, the possible presence of secondary structure in these disordered domains and the functional importance of the disordered domains revealed here designate these domains as putative interacting spots with partners in either pathway. Targeting these interacting regions is a promising route to the discovery of inhibitory molecules that could increase the susceptibility of pathogens to the antifungals currently in clinical use.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Parede Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Fatores de Transcrição/metabolismo , Difração de Raios X
7.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297413

RESUMO

Isoniazid (INH) is one of the key molecules employed in the treatment of tuberculosis (TB), the most deadly infectious disease worldwide. However, the efficacy of this cornerstone drug has seriously decreased due to emerging INH-resistant strains of Mycobacterium tuberculosis (Mtb). In the present study, we aimed to chemically tailor INH to overcome this resistance. We obtained thirteen novel compounds by linking INH to in-house synthesized sulfonate esters via a hydrazone bridge (SIH1-SIH13). Following structural characterization by FTIR, 1H NMR, 13C NMR, and HRMS, all compounds were screened for their antitubercular activity against Mtb H37Rv strain and INH-resistant clinical isolates carrying katG and inhA mutations. Additionally, the cytotoxic effects of SIH1-SIH13 were assessed on three different healthy host cell lines; HEK293, IMR-90, and BEAS-2B. Based on the obtained data, the synthesized compounds appeared as attractive antimycobacterial drug candidates with low cytotoxicity. Moreover, the stability of the hydrazone moiety in the chemical structure of the final compounds was confirmed by using UV/Vis spectroscopy in both aqueous medium and DMSO. Subsequently, the compounds were tested for their inhibitory activities against enoyl acyl carrier protein reductase (InhA), the primary target enzyme of INH. Although most of the synthesized compounds are hosted by the InhA binding pocket, SIH1-SIH13 do not primarily show their antitubercular activities by direct InhA inhibition. Finally, in silico determination of important physicochemical parameters of the molecules showed that SIH1-SIH13 adhered to Lipinski's rule of five. Overall, our study revealed a new strategy for modifying INH to cope with the emerging drug-resistant strains of Mtb.

8.
Bioorg Med Chem ; 71: 116938, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35933838

RESUMO

Tuberculosis (TB) remains a global health crisis, further exacerbated by the slow pace of new treatment options, and the emergence of extreme and total drug resistance to existing drugs. The challenge to developing new antibacterial compounds with activity against Mycobacterium tuberculosis (Mtb), the causative agent of TB, is in part due to unique features of this pathogen, especially the composition and structure of its complex cell envelope. Therefore, targeting enzymes involved in cell envelope synthesis has been of major interest for anti-TB drug discovery. FAAL32 is a fatty acyl-AMP ligase involved in the biosynthesis of the cell wall mycolic acids, and a potential target for drug discovery. To rapidly advance research in this area, we initiated a drug repurposing campaign and screened a collection of 1280 approved human or veterinary drugs (Prestwick Chemical Library) using a biochemical assay that reads out FAAL32 inhibition. These efforts led to the discovery of salicylanilide closantel, and some of its derivatives as inhibitors with potent in vitro activity against M. tuberculosis. These results suggest that salicylanilide represents a potentially promising pharmacophore for the conception of novel anti-tubercular candidates targeting FAAL32 that would open new targeting opportunities. Moreover, this work illustrates the value of drug repurposing campaigns to discover new leads in challenging drug discovery fields.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Monofosfato de Adenosina/uso terapêutico , Antituberculosos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Salicilanilidas , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
9.
Drug Dev Res ; 83(6): 1292-1304, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35769019

RESUMO

The recent emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) has complicated and significantly slowed efforts to eradicate and/or reduce the worldwide incidence of life-threatening acute and chronic cases of tuberculosis. To overcome this setback, researchers have increased the intensity of their work to identify new small-molecule compounds that are expected to remain efficacious antimicrobials against Mtb. Here, we describe our effort to apply the principles of molecular hybridization to synthesize 16 compounds carrying thiophene and thiazole rings beside the core urea functionality (TTU1-TTU16). Following extensive structural characterization, the obtained compounds were initially evaluated for their antimycobacterial activity against Mtb H37Rv. Subsequently, three derivatives standing out with their anti-Mtb activity profiles and low cytotoxicity (TTU5, TTU6, and TTU12) were tested on isoniazid-resistant clinical isolates carrying katG and inhA mutations. Additionally, due to their pharmacophore similarities to the well-known InhA inhibitors, the molecules were screened for their enoyl acyl carrier protein reductase (InhA) inhibitory potentials. Molecular docking studies were performed to support the experimental enzyme inhibition data. Finally, drug-likeness of the selected compounds was established by theoretical calculations of physicochemical descriptors.


Assuntos
Proteínas de Bactérias , Ureia , Antituberculosos/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ureia/farmacologia
10.
BMC Biol ; 20(1): 147, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729566

RESUMO

BACKGROUND: Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS: We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS: The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.


Assuntos
Mycobacterium tuberculosis , Policetídeos , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/química , Ácidos Micólicos/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
11.
Nat Commun ; 13(1): 2641, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552387

RESUMO

Toxins of toxin-antitoxin systems use diverse mechanisms to control bacterial growth. Here, we focus on the deleterious toxin of the atypical tripartite toxin-antitoxin-chaperone (TAC) system of Mycobacterium tuberculosis, whose inhibition requires the concerted action of the antitoxin and its dedicated SecB-like chaperone. We show that the TAC toxin is a bona fide ribonuclease and identify exact cleavage sites in mRNA targets on a transcriptome-wide scale in vivo. mRNA cleavage by the toxin occurs after the second nucleotide of the ribosomal A-site codon during translation, with a strong preference for CCA codons in vivo. Finally, we report the cryo-EM structure of the ribosome-bound TAC toxin in the presence of native M. tuberculosis cspA mRNA, revealing the specific mechanism by which the TAC toxin interacts with the ribosome and the tRNA in the P-site to cleave its mRNA target.


Assuntos
Antitoxinas , Mycobacterium tuberculosis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Chaperonas Moleculares/genética , Mycobacterium tuberculosis/genética , RNA Mensageiro/genética , Ribossomos
12.
mSphere ; 7(2): e0048221, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35296143

RESUMO

Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), one of the deadliest infectious diseases. The alarming health context coupled with the emergence of resistant M. tuberculosis strains highlights the urgent need to expand the range of anti-TB antibiotics. A subset of anti-TB drugs in use are prodrugs that require bioactivation by a class of M. tuberculosis enzymes called Baeyer-Villiger monooxygenases (BVMOs), which remain understudied. To examine the prevalence and the molecular function of BVMOs in mycobacteria, we applied a comprehensive bioinformatic analysis that identified six BVMOs in M. tuberculosis, including Rv3083 (MymA), Rv3854c (EthA), Rv0565c, and Rv0892, which were selected for further characterization. Homology modeling and substrate docking analysis, performed on this subset, suggested that Rv0892 is closer to the cyclohexanone BVMO, while Rv0565c and EthA are structurally and functionally similar to MymA, which is by far the most prominent type I BVMO enzyme. Thanks to an unprecedented purification and assay optimization, biochemical studies confirmed that all four BVMOs display BV-oxygenation activity. We also showed that MymA displays a distinctive substrate preference that we further investigated by kinetic parameter determination and that correlates with in silico modeling. We provide insights into distribution of BVMOs and the structural basis of their substrate profiling, and we discuss their possible redundancy in M. tuberculosis, raising questions about their versatility in prodrug activation and their role in physiology and infection. IMPORTANCE Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the leading causes of death worldwide. The rise in drug resistance highlights the urgent need for innovation in anti-TB drug development. Many anti-TB drugs require bioactivation by Baeyer-Villiger monooxygenases (BVMOs). Despite their emerging importance, BVMO structural and functional features remain enigmatic. We applied a comprehensive bioinformatic analysis and confirmed the presence of six BVMOs in M. tuberculosis, including MymA, EthA, and Rv0565c-activators of the second-line prodrug ethionamide-and the novel BVMO Rv0892. Combining in silico characterization with in vitro validation, we outlined their structural framework and substrate preference. Markedly, MymA displayed an enhanced capacity and a distinct selectivity profile toward ligands, in agreement with its catalytic site topology. These features ground the molecular basis for structure-function comprehension of the specificity in these enzymes and expand the repertoire of BVMOs with selective and/or overlapping activity for application in the context of improving anti-TB therapy.


Assuntos
Mycobacterium tuberculosis , Pró-Fármacos , Antituberculosos/farmacologia , Biologia Computacional , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Mycobacterium tuberculosis/genética
13.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959681

RESUMO

The mycolic acid biosynthetic pathway represents a promising source of pharmacological targets in the fight against tuberculosis. In Mycobacterium tuberculosis, mycolic acids are subject to specific chemical modifications introduced by a set of eight S-adenosylmethionine dependent methyltransferases. Among these, Hma (MmaA4) is responsible for the introduction of oxygenated modifications. Crystallographic screening of a library of fragments allowed the identification of seven ligands of Hma. Two mutually exclusive binding modes were identified, depending on the conformation of residues 147-154. These residues are disordered in apo-Hma but fold upon binding of the S-adenosylmethionine (SAM) cofactor as well as of analogues, resulting in the formation of the short η1-helix. One of the observed conformations would be incompatible with the presence of the cofactor, suggesting that allosteric inhibitors could be designed against Hma. Chimeric compounds were designed by fusing some of the bound fragments, and the relative binding affinities of initial fragments and evolved compounds were investigated using molecular dynamics simulation and generalised Born and Poisson-Boltzmann calculations coupled to the surface area continuum solvation method. Molecular dynamics simulations were also performed on apo-Hma to assess the structural plasticity of the unliganded protein. Our results indicate a significant improvement in the binding properties of the designed compounds, suggesting that they could be further optimised to inhibit Hma activity.

14.
Sci Rep ; 11(1): 18042, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508141

RESUMO

Owing to their role in activating enzymes essential for bacterial viability and pathogenicity, phosphopantetheinyl transferases represent novel and attractive drug targets. In this work, we examined the inhibitory effect of the aminido-urea 8918 compound against the phosphopantetheinyl transferases PptAb from Mycobacterium abscessus and PcpS from Pseudomonas aeruginosa, two pathogenic bacteria associated with cystic fibrosis and bronchiectasis, respectively. Compound 8918 exhibits inhibitory activity against PptAb but displays no activity against PcpS in vitro, while no antimicrobial activity against Mycobacterium abscessus or Pseudomonas aeruginosa could be detected. X-ray crystallographic analysis of 8918 bound to PptAb-CoA alone and in complex with an acyl carrier protein domain in addition to the crystal structure of PcpS in complex with CoA revealed the structural basis for the inhibition mechanism of PptAb by 8918 and its ineffectiveness against PcpS. Finally, in crystallo screening of potent inhibitors from the National Cancer Institute library identified a hydroxypyrimidinethione derivative that binds PptAb. Both compounds could serve as scaffolds for the future development of phosphopantetheinyl transferases inhibitors.


Assuntos
Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Pirimidinonas/química , Transferases (Outros Grupos de Fosfato Substituídos)/química , Ureia/química , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium abscessus/enzimologia , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes , Relação Estrutura-Atividade , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia
15.
ACS Chem Biol ; 15(12): 3206-3216, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33237724

RESUMO

Mycobacterium tuberculosis is the causative agent of the tuberculosis disease, which claims more human lives each year than any other bacterial pathogen. M. tuberculosis and other mycobacterial pathogens have developed a range of unique features that enhance their virulence and promote their survival in the human host. Among these features lies the particular cell envelope with high lipid content, which plays a substantial role in mycobacterial pathogenicity. Several envelope components of M. tuberculosis and other mycobacteria, e.g., mycolic acids, phthiocerol dimycocerosates, and phenolic glycolipids, belong to the "family" of polyketides, secondary metabolites synthesized by fascinating versatile enzymes-polyketide synthases. These megasynthases consist of multiple catalytic domains, among which the acyltransferase domain plays a key role in selecting and transferring the substrates required for polyketide extension. Here, we present three new crystal structures of acyltransferase domains of mycobacterial polyketide synthases and, for one of them, provide evidence for the identification of residues determining extender unit specificity. Unravelling the molecular basis for such specificity is of high importance considering the role played by extender units for the final structure of key mycobacterial components. This work provides major advances for the use of mycobacterial polyketide synthases as potential therapeutic targets and, more generally, contributes to the prediction and bioengineering of polyketide synthases with desired specificity.


Assuntos
Mycobacterium/enzimologia , Policetídeo Sintases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Policetídeo Sintases/química , Conformação Proteica , Especificidade por Substrato
16.
Artigo em Inglês | MEDLINE | ID: mdl-32923411

RESUMO

Mycobacterium tuberculosis (Mtb) synthesizes a variety of atypical lipids that are exposed at the cell surface and help the bacterium infect macrophages and escape elimination by the cell's immune responses. In the present study, we investigate the mechanism of action of one family of hydrophobic lipids, the phthiocerol dimycocerosates (DIM/PDIM), major lipid virulence factors. DIM are transferred from the envelope of Mtb to host membranes during infection. Using the polarity-sensitive fluorophore C-Laurdan, we visualized that DIM decrease the membrane polarity of a supported lipid bilayer put in contact with mycobacteria, even beyond the site of contact. We observed that DIM activate the complement receptor 3, a predominant receptor for phagocytosis of Mtb by macrophages. DIM also increased the activity of membrane-permeabilizing effectors of Mtb, among which the virulence factor EsxA. This is consistent with previous observations that DIM help Mtb disrupt host cell membranes. Taken together, our data show that transferred DIM spread within the target membrane, modify its physical properties and increase the activity of host cell receptors and bacterial effectors, diverting in a non-specific manner host cell functions. We therefore bring new insight into the molecular mechanisms by which DIM increase Mtb's capability to escape the cell's immune responses.


Assuntos
Mycobacterium tuberculosis , Lipídeos , Macrófagos , Fagocitose
17.
FEBS J ; 287(21): 4729-4746, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32128972

RESUMO

One central question surrounding the biosynthesis of fatty acids and polyketide-derived natural products is how the 4'-phosphopantetheinyl transferase (PPTase) interrogates the essential acyl carrier protein (ACP) domain to fulfill the initial activation step. The triggering factor of this study was the lack of structural information on PPTases at physiological pH, which could bias our comprehension of the mechanism of action of these important enzymes. Structural and functional studies on the family II PPTase PptAb of Mycobacterium abscessus show that pH has a profound effect on the coordination of metal ions and on the conformation of endogenously bound coenzyme A (CoA). The observed conformational flexibility of CoA at physiological pH is accompanied by a disordered 4'-phosphopantetheine (Ppant) moiety. Finally, structural and dynamical information on an isolated mycobacterial ACP domain, in its apo form and in complex with the activator PptAb, suggests an alternate mechanism for the post-translational modification of modular megasynthases.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Coenzima A/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Coenzima A/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Mycobacterium abscessus/enzimologia , Mycobacterium abscessus/genética , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
18.
Molecules ; 25(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106588

RESUMO

With the advent of structural biology in the drug discovery process, medicinal chemists gained the opportunity to use detailed structural information in order to progress screening hits into leads or drug candidates. X-ray crystallography has proven to be an invaluable tool in this respect, as it is able to provide exquisitely comprehensive structural information about the interaction of a ligand with a pharmacological target. As fragment-based drug discovery emerged in the recent years, X-ray crystallography has also become a powerful screening technology, able to provide structural information on complexes involving low-molecular weight compounds, despite weak binding affinities. Given the low numbers of compounds needed in a fragment library, compared to the hundreds of thousand usually present in drug-like compound libraries, it now becomes feasible to screen a whole fragment library using X-ray crystallography, providing a wealth of structural details that will fuel the fragment to drug process. Here, we review theoretical and practical aspects as well as the pros and cons of using X-ray crystallography in the drug discovery process.


Assuntos
Descoberta de Drogas , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Proteínas/uso terapêutico
19.
PLoS One ; 14(10): e0223877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603944

RESUMO

The carboxysome is a bacterial micro-compartment (BMC) subtype that encapsulates enzymatic activities necessary for carbon fixation. Carboxysome shells are composed of a relatively complex cocktail of proteins, their precise number and identity being species dependent. Shell components can be classified in two structural families, the most abundant class associating as hexamers (BMC-H) that are supposed to be major players for regulating shell permeability. Up to recently, these proteins were proposed to associate as homo-oligomers. Genomic data, however, demonstrated the existence of paralogs coding for multiple shell subunits. Here, we studied cross-association compatibilities among BMC-H CcmK proteins of Synechocystis sp. PCC6803. Co-expression in Escherichia coli proved a consistent formation of hetero-hexamers combining CcmK1 and CcmK2 or, remarkably, CcmK3 and CcmK4 subunits. Unlike CcmK1/K2 hetero-hexamers, the stoichiometry of incorporation of CcmK3 in associations with CcmK4 was low. Cross-interactions implicating other combinations were weak, highlighting a structural segregation of the two groups that could relate to gene organization. Sequence analysis and structural models permitted the localization of interactions that would favor formation of CcmK3/K4 hetero-hexamers. The crystallization of these CcmK3/K4 associations conducted to the elucidation of a structure corresponding to the CcmK4 homo-hexamer. Yet, subunit exchange could not be demonstrated in vitro. Biophysical measurements showed that hetero-hexamers are thermally less stable than homo-hexamers, and impeded in forming larger assemblies. These novel findings are discussed within the context of reported data to propose a functional scenario in which minor CcmK3/K4 incorporation in shells would introduce sufficient local disorder as to allow shell remodeling necessary to adapt rapidly to environmental changes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/química , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Ligação Proteica , Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Synechocystis/genética , Termodinâmica
20.
Nat Commun ; 10(1): 1187, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846693

RESUMO

The original version of this Article contained errors in Figures 1 and 4. In Fig. 1b, the Mtb-SecBTA sequence was displayed incorrectly. In the inset panel within Fig. 4c, the y-axis of the graph incorrectly read (Q.Rg)2 × I(Q)//(0), and should have read (Q.Rg)2 × I(Q)/I(0). These errors have been corrected in both the PDF and HTML versions of the Article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...